Asymptotic Properties of Solutions to Discrete Sturm-Liouville Monotone Type Equations

نویسندگان

چکیده

Abstract We investigate the discrete equations of form Δ ( r n x ) = a f σ + b . \Delta \left( {{r_n}\Delta {x_n}} \right) = {a_n}f\left( {{x_{\sigma n \right)}}} + {b_n}. Using Knaster-Tarski fixed point theorem, we study solutions with prescribed asymptotic behaviour. Our technique allows us to control degree approximation. In particular, present results concerning harmonic and geometric approximations solutions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reflectionless Sturm-Liouville Equations

We consider compactly supported perturbations of periodic Sturm-Liouville equations. In this context, one can use the Floquet solutions of the periodic background to define scattering coefficients. We prove that if the reflection coefficient is identically zero, then the operators corresponding to the periodic and perturbed equations, respectively, are unitarily equivalent. In some appendices, ...

متن کامل

Asymptotic distributions of Neumann problem for Sturm-Liouville equation

In this paper we apply the Homotopy perturbation method to derive the higher-order asymptotic distribution of the eigenvalues and eigenfunctions associated with the linear real second order equation of Sturm-liouville type on $[0,pi]$ with Neumann conditions $(y'(0)=y'(pi)=0)$ where $q$ is a real-valued Sign-indefinite number of $C^{1}[0,pi]$ and $lambda$ is a real parameter.

متن کامل

Hardy Type Inequalities via Riccati and Sturm–Liouville Equations

We discuss integral estimates for domain of solutions to some canonical Riccati and Sturm–Liouville equations on the line. The approach is applied to Hardy and Poincaré type inequalities with weights.

متن کامل

On a class of systems of n Neumann two-point boundary value Sturm-Liouville type equations

Employing a three critical points theorem, we prove the existence ofmultiple solutions for a class of Neumann two-point boundary valueSturm-Liouville type equations. Using a local minimum theorem fordifferentiable functionals the existence of at least one non-trivialsolution is also ensured.

متن کامل

Existence of multiple solutions for Sturm-Liouville boundary value problems

In this paper, based on variational methods and critical point theory, we guarantee the existence of infinitely many classical solutions for a two-point boundary value problem with fourth-order Sturm-Liouville equation; Some recent results are improved and by presenting one example, we ensure the applicability of our results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tatra mountains mathematical publications

سال: 2023

ISSN: ['1210-3195', '1338-9750']

DOI: https://doi.org/10.2478/tmmp-2023-0014